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The mean flow development in an initially turbulent boundary layer subjected 
to a large favourable pressure gradient beginning at a point x,, is examined 
through analyses expected a priori to be valid on either side of relaminarization. 
The ‘quasi-laminar’ flow in the later stages of reversion, where the Reynolds 
stresses have by definition no significant effect on the mean flow, is described by 
an asymptotic theory constructed for large values of a pressure-gradient para- 
meter A, scaled on a characteristic Reynolds stress gradient. The limiting flow 
consists of an inner laminar boundary layer and a matching inviscid (but rota- 
tional) outer layer. There is consequently no entrainment to lowest order in A-l, 
and the boundary layer thins down to conserve outer vorticity. In  fact, the 
predictions of the theory for the common measures of boundary-layer thickness 
are in excellent agreement with experimental results, almost all the way from xo. 
On the other hand the development of wall parameters like the skin friction 
suggests the presence of a short bubble-shaped reverse-transitional region on the 
wall, where neither turbulent nor quasi-laminar calculations are valid. The ran- 
dom velocity fluctuations inherited from the original turbulence decay with 
distance, in the inner layer, according to inverse-power laws characteristic of 
quasi-steady perturbations on a laminar flow. In the outer layer, there is evidence 
that the dominant physical mechanism is a rapid distortion of the turbulence, 
with viscous and inertia forces playing a secondary role. All the observations 
available suggest that final retransition to turbulence quickly follows the onset 
of instability in the inner layer. 

It is concluded that reversion in highly accelerated flows is essentially due to 
the domination of pressure forces over the slowly responding Reynolds stresses 
in an originally turbulent flow, accompanied by the generation of a new laminar 
boundary layer stabilized by the favourable pressure gradient. 

1. Introduction 
What was possibly the first observation of a reversion from turbulent to 

laminar flow was in effect made by Taylor (1929) in his work on curved pipes; 
among the many other situations where such a reversion apparently occurs, the 
boundary layer subjected to a large favourable pressure gradient has been ex- 
tensively studied in recent years (e.g. Launder 1964; Moretti & Kays 1965; 
Schraub & Kline 1965; Pate1 & Head 1968; Badri Narayanan & Ramjee 1969). 
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Authors Criterion Reynolds numbcr L V 

Schraub & Kline (1965) Cessation of bursting K-l UjU! U 
Patel &Head (1968) Wall-layer velocity A;l W P t  u, 

A;l u, 
Brsdshaw ( 1969) Direct dependence Eddy Reynolds Dissipation- T i  

Badri Narayanan & Decay of longitudi- R, 8 U 

distribution 

on viscosity number lengthpara- 
meter 

Ramjee (1969) rial velocity fluctua- 
tions 

TABLE 1. Some proposed criteria for reversion 

While procedures that are essentially empirical have been suggested for the 
prediction of boundary-layer characteristics during reversion (e.g. Jones & 
Launder 1972), there is as yet no agreement on the precise criterion for the 
occurrence of laminarization, or even on how its onset may be recognized. All 
current proposals for the critical parameter that might govern the phenomenon 
involve, however, the viscosity of the fluid, and most of them can be interpreted 
as some kind of Reynolds number: the different choices for the relevant length 
and velocity scales, say L and V ,  are summarized in table 1. ( U  = U ( x )  is the 
free-stream velocity distribution, 7is the Reynolds shear stress and U, the friction 
velocity; U’ = dU/dx ,  p’ = - UU’ = dp/dx,  and both p and r are in kinematic 
units; 0 is the momentum thickness.) Various combinations of K and the skin- 
friction coefficient cf, of the form Kc?” with n varying between $ and #, have also 
been suggested (Back, Massier & Gier 1964; Launder & Stinchcombe 1967). 

There are particular difficulties with some of these proposals. For example, 
the bursting rate, if scaled with wall variables, decreases with the Reynolds 
number even in non-reverting constant-pressure flow (Rao, Narasimha & 
Badri Narayanan 1971); and it would be somewhat surprising if, over an appre- 
ciable Reynolds number range, the relevant parameter were to be one like K 
which takes no account of the shear flow a t  all (see $4.6). The last entry in table 
1 implies, on the other hand, a vastly different mechanism, in which the sole effect 
of the pressure gradient would be to reduce the local Reynolds number R, to a 
‘critical’ value. Patel & Head (1968) recognized clearly the potential importance 
of studying the effect of large pressure gradients on wall similarity; their attrac- 
tive proposal, with which Bradshaw’s is consistent under appropriate conditions, 
is based on a highly plausible mixing-length model for an equilibrium wall layer 
(Townsend 1961). However, the Patel-Head velocity profile derived from this 
model contains an algebraic error (see appendix A); use of the corrected velocity 
profile suggests that ‘reversion ’ occurs at a ‘ critical ’ value for A, of only about 
- 0.004, which would no longer be in good agreement with Bradshaw’s criterion. 
Furthermore the experiments of Patel & Head imply (as shown in appendix A) 
that reversion does not occur the first time either Ap or A7 reaches its critical 
value, as quoted by them or corrected by us, so that there must be at least one 
other additional parameter in the problem. 
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Indeed, inferring reversion from the observed departure from a ‘standard’ 
turbulent law sueers from an inherent difficulty especially when the law is based 
on a fairly specific turbulence model; for the attempt presumes a completeness 
that has apparently not yet been achieved in our understanding of fully turbulent 
flow in pressure gradients. Thus, there is always the possibility that departures 
from the presumed standard may not so much be an indication of reversion as of 
our ignorance of turbulence. In  contrast, the corlapletion of the process can 
evidently be given a definite meaning, for it occurs, certainly for the mean flow 
field, when the net effect of the Reynolds stresses is negligible. Random fluctua- 
tions inherited from previous history may still remain, but are no longer relevant 
to the dynamics of the mean flow, which under these circumstances may aptly 
be said to have reached a quasi-laminar state. If (as indeed we shall argue) full 
laminarization is achieved only asymptotically, completion of the reversion 
process will of course have to be identified by specifying the degree to which the 
Reynolds stresses are negligible, but this is a matter of detail. 

We therefore begin with a study that may be expected a priori to be valid 
during the later stages of reversion and involves the formulation of a ‘quasi- 
laminar limit’ with a suitable large pressure-gradient parameter (Sreenivasan & 
Narasimha 1971). The solution may be split into an inner viscous layer and an 
outer inviscid layer, so that its physical content has much in common with some 
earlier work (often in a different context) a t  both low and high speeds (e.g. Strat- 
ford 1959t; Vivekanandan 1963; Launder 1964; Head & Bradshaw (1971) have 
also used simplified inviscid flow arguments in their analysis of entrainment 
during reversion). However, our use of matched asymptotic expansions results 
in a theory which is not only more rational (cf. Van Dyke 1964) but also simpler 
(less computational effort) and more effective (e.g. choice of a virtual origin is not 
a t  all critical, unlike the case in Launder’s calculations). 

Using this solution as a kind of touchstone, we then proceed to sketch the other 
stages of the flow. Figure 1 illustrates a framework for the present analysis of the 
typical experimental situation, in which a fully turbulent boundary layer de- 
velops at constant pressure up to the point xo, beyond which a steep pressure 
gradient is imposed. It is reasonable to begin by seeking a division of the flow, as 
shown in figure 1, into a region I in the neighbourhood of x,, in which the flow 
continues to be ‘fully turbulent’, a region I11 sufficiently far downstream where 
the two-layer quasi-laminar limit is valid, a transitional region I1 in between, 
with an upstream boundary which, if well defined, could mark the onset of rever- 
sion, and finally a region IV where the flow is once again turbulent. 

It would seem that region I should first be treated using one of the many sophis- 
ticated procedures now available for computing fully turbulent flows (see e.g. 
Kline, Moffatt & Morkovin 1969). We have not done this for two reasons. First, 
the validity of these procedures in large favourable pressure gradients remains 
undetermined, and will perhaps so remain till the intimately related question of 
possible reversion is resolved. The earlier remarks concerning inference of rever- 
sion apply again: in general, it  will not be easy to decide whether differences 

t From the present viewpoint, Stratford’s work represents an ingenious but ad hoc at- 
tempt at  second-order theory in a large adverse pressure gradient. 
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Fully turbulent + Quasi-laminar t Retransition 

Reverse- 
transitional 

Constant 
pressure 

FIGURE 1,  Sketch of the flow situation considered, with a preliminary division into different 
regions. The dashed line separates inner and outer layers in region 111. 

between measurement and prediction are due to relaminarization or to inade- 
quacies in the turbulence model. Second, we find below that the quasi-laminar 
theory is valid almost from xo in the outer layer, so there is no strong need for 
more elaborate methods anyway. Our present purpose will therefore be served 
by illustrative calculations, which we make by the simple method due to Spence 
(1956). In  fact, straightforward interpolation between limiting solutions seems 
to be adequate for a first approximation, and provides a basis for further refine- 
ment if necessary. 

These analyses show that a rational division of the flow during reversion, into 
regions based on the dominating physical mechanisms, calls for considerable 
revision of the boundaries in figure 1; we shall show that there emerges a GO- 

herent overall picture of the phenomenon that largely explains experimental 
observations of both mean and fluctuating quantities. 

2. The quasi-laminar equations 

is governed by the equations 
The development of an incompressible two-dimensional boundary-layer flow 

aupx + avpy = 0, 
au au au a2u a7 

ax ay dx ay2 ay’ 

(2.1) 

(2.2) u-+v- = u-+v-+- 
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where u and v are mean velocity components along and normal to the main 
stream. 

With the situation illustrated in figure 1, we now consider a limiting analysis 
for large values of the parameter A 3 -p'8/ro, where 6 is a measure of the total 
boundary-layer thickness and ro a characteristic Reynolds stress. We are there- 
fore assuming that, on an elementary slice of the boundary layer between two 
successive stations x and x + dx, say, the net pressure force is much larger than 
the Reynolds shear force. Such an assumption does not necessarily violate the 
boundary-layer approximation, for two reasons. First, noting that 

and that cf is generally small, it is clear that both A-l and U'S/U can be small: 
the free-stream velocity does not have to vary rapidly over distances of order S for 
A to be large. Second, there is no apparent tendency for the Reynolds stress to 
keep in step with a large pressure gradient, as measurements in wakes have 
shown (Naraaimha & Prabhu 1972). In  fact, values of Ihl appreciably greater 
than unity are easily obtained in many boundary-layer situations. 

Of course in any real incompressible flow the pressure gradient cannot become 
large discontinuously, so a certain region x = xo + would, strictly speaking, have 
to be excluded from the limit. In  the outer region of a turbulent boundary layer 
the viscous stresses are always negligible; a suitable outer limit of (2.2), as A-l+ 0 
with ?j = y/8 fixed (bars denoting outer variables, but U = u, V = v, Z = x), 

k1 - cf( UlU'S) 

is therefore 

representing plane inviscid rotational flow, with the total head and vorticity 
present a t  xo being convected downstream along streamlines with no loss or 
diffusion. Towards the wall (jj +- 0 ) ,  there will thus be a non-zero slip velocity 
given by 

found from Bernoulli's equation along the zero streamline in the outer flow; 
the value of 'ilo(xo) will be discussed in the next section. 

The inner layer, which must develop near the wall to satisfy the no-slip 
boundary condition, is described by the limit R-l+ 0 with y" = yl8 fixed, where 
8, theinner-layer thickness, is O(A-*8) : the corresponding limit of (2.2), with tildes 
denoting inner variables (again G = u, v" = v, 2 = x), is the laminar boundary- 
layer equation 

the Reynolds stress being ignored, as it can certainly be in the quasi-laminar 
region I11 of figure 1. Because the outer limit (2.3) is contained in (2.5), the 
division into two layers is not strictly necessary, but it is nevertheless both 
natural and instructive. 

By conventional matching (e.g. Van Dyke 1964, p. 64), the boundary con- 
ditions are z + U ,  V = O  as j j - fm ,  (2.6a, b) 

( 2 . 6 ~ )  - 
G(x, y" -+ 00) = u(x ,  g 3 0 )  = UO(X), 

4 = O = v "  at y " = O .  (2.6a) 
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In  an approximate method of calculation assuming a finite boundary-layer 
thickness 8, equation (2.6a) could be replaced by the condition 

u = U  at g = i .  (2.6 a') 

3. Method of solution 

methods, which prove to be entirely adequate. 
For solving the equations formulated above we adopt simple approximate 

3.1. The outer equation 

Employing an integral technique, we need a parametric representation of the 
velocity profile that is sufficiently flexible to describe the initial fully turbulent 
boundary layer, to account for the slip velocity Go and to characterize the expec- 
ted laminar flow in the late stages of reversion. These multiple requirements 
unfortunately rule out a simple universal defect profile in which ( U  - u)/( U - Go) 
is a function only of 3; experimental data in reverting flows confirm the expecta- 
tion that a single such function cannot be valid in both turbulent and laminar 
flow. We have therefore tried expressions of the general type 

(3.1) 
- 
u p  = U0(x) +A(x)y""'+ZB,(x)P,(~), 

where U, = Uo/U is the non-dimensional slip velocity, the Pk are polynomials in 
g, and A ,  n and Bk are parameters to be determined. The use of a power law leads 
to large slopes near the wall whenever n < 1, but these slopes become significant 
only a t  very small values of y+ = yU,/v (typically 5 5) .  If therefore we ignore 
this region and follow the customary precaution of never differentiating a power- 
law profile, no difficulty is encountered. 

In fact our experience is that the first two terms in (3.1), which together are 
equivalent to a single-parameter defect family 

(-,4/(u--~o) = m y ;  n ( x ) ) ,  (3.2) 

are enough to give entirely satisfactory results. Sample calculations with a 
single additional term B,(x) ij, to be quoted below, show that the results are hardly 
affected, so the last term in (3.1) will be generally ignored in the following. 

Now, consistency of (3.1) with the standard power law used in turbulent 
boundary-layer calculations requires that iio(xo) and Uo(x,) be zero; from (2.4) 
and the boundary condition (2.6 a') we must therefore have 

1 - A ( x )  = U0(x) = (1 - [v(x,)/u(x)]2):. (3.3) 

The two remaining parameters n and 6 are obtained from the momentum and 
energy integral equationst (for an inviscid boundary layer !) 

dB U' - - 

dx U -+--(2e+s*) = o (3.4) 

and UB** = constant, (3.5) 
f A referee has suggested that it might be simpler to use an entrainment condition (see 

4 4. I below) instead of the energy equation (3.5). 
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I I I I 

0 5 10 15 
x - x o  (in.) 

FIGURE 2. Free-stream velocity distributions in various reversion experiments, compared 
with values (full line) implied by best power-law fit to E0. Arrows mark K*. 

are respectively the displacement, momentum and energy thicknesses of the 
outer layer. By straightforward algebra (3.6) can be evaluated in terms of n and 
6, and 6 eliminated between (3.4) and ( 3 4 ,  to give a first-order nonlinear ordi- 
nary differential equation for n of the type 

dnldx = (U]u)f(% Uo), (3.7) 

which is written out in detail in appendix B. This equation is readily solved, 
using, for example, a Runge-Kutta routine with Gill’s modification (Ralston & 
Wilf 1960, p. 110). Once n is known, &is obtained from (3.5). 

3.2. The inner equation 

In  most cases in the work reported below it was found possible to fit a power law 
of the form Go N (x - xo)m to the computed values of Uo and so obtain the inner 
solution as the appropriate member of the well-known Falkner-Skan family. 
For example, the skin-friction coefficient is given by 

Cf = 7,/4u2 =f”(O) [2(m+ 1) v /Uo(x-xo)]~  ( E p P ) ,  (3.8) 

wheref”(0) is the second derivative of the similarity solution f a t  the wall, with 
the same notation as in Rosenhead (1963, p. 235)t. The accuracy of such a pro- 
cedure can be partly judged from figure 2, which compares, in some representative 

t Equation (3.8) gives of - ( ~ - z ~ ) f ( ~ ~ - - l ) ,  which goes to zero as x+ x0 if m > 5. 
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Reference 

Badri Narayanan 
& Ramjee (1969) 

Blaokwelder & 

Back & Seban 

Launder (1964) 

Kovasznay (1972) 

(1967) 

Launder & 
Stinchcombe 
(1967) 

Moretti & Kays 
(1965) 

Narahari Rao 
(unpublished) 

Pate1 &Head 
(1968) 

Schraub & Kline 

Sreenivasan 

(1965) 

(19724 

Flow 
code 

BR 1 
BR 2 
BR 3 
BR 4 
BR 5 
BR 6 

BK 

BS I 
BS 2 

L 

LS 

MK 5 
MK 7 
MK9 
MK 12 

NR 

PH 1 

PH 2 

SK 

S 1  
s2 
53 

Experimental 
configuration 

Tunnel wall liner 
Tunnel wall liner 
Tunnel wall liner 
40" wedge 
40" wedge 
40" wedge 

Two-dimensional 

Tunnel wall liner 
Tunnel wall liner 

Two-dimensional 
nozzle 

Wedge 

contraction 

Variable-height 
tunnel 

20" wedge 

Centre body in pipe 

Centre body in pipe 

Water channel with 

40" wedge 
40" wedge 
40" wedge 

a flexible wall 

2 0  

7 in. 
4in. 
7 in. 
0 
0 
0 

9.0 m 

4in. 
4in. 

18in. 

0 

2.267 ft 
2.011ft 
4.663 ft 
4.406 f t  

-4in. 

- 4 in. 

-4in. 

8.14ft 

l l 6 i n .  
ll-5in. 
11.5 in. 

R8 a t  
XO Remarks 

1650 BRn is experi- 
307 ment number n 
406 of the reference 

2050 
1240 

777 
2500 - 

300 U ( x o )  = 52ft/s 
600 U(z,) = llOft/s 

1000 

200 K =  3x10" 

MKn is run n of 
1410 the reference 

2820 

1590 Samebasic 
apparatus as in 
BR 

length 

length 

586 Strong negative 

675 Same basic 

850 inBR 

2100 22in.entry 

6000 124in. entry 

dPldX 

1080 apparatus as 

TABLE 2. List of flows analysed 

cases, measured free-stream velocity distributions with those implied by the 
fit used for iio in the calculations. (The experimental data are here designated 
by a code shown in table 2.) When such a fit was not good enough (as e.g. in BR 2, 
which represents the largest departure encountered in the present calculations), 
we have used the method of Thwaites (1949), which gives excellent results for 
the momentum thickness and skin friction but provides no velocity profiles. 

Similarly the thermal characteristics of the boundary layer may be obtained 
by Lighthill's (1960) method. For example, in incompressible flow with a con- 
stant wall temperature To and free-stream temperature T,, as in some of the ex- 
periments of Moretti & Kays (1965), the heat transfer from the appropriate 
inner solution with Go w (Z-Z, )~ is given by the local Stanton number S(x);  
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where qo is the wall heat flux, C, the constant-pressure specific heat and am(g) 
is a function whose values a t  a Prandtl number c = 0.7 (for air) have been tabu- 
lated against m by Curle (1962, p. 72).  Again when the power law ;Ito N ( X - X ~ ) ~  

is not a sufficiently good fit to the experimental data, we have used a simple 
modification of the above method given by Curle (1962, pp. 76-77). 

As mentioned in $1, calculations have also been made of boundary-layer 
development using the procedure of Spence (1956), which is straightforward and 
involves only simple quadrature. 

4. Results 
Unfortunately no single experiment (or set of experiments) provides a com- 

plete test case for the purposes of the present analysis, either because a significant 
quantity (like the skin friction) has not been measured or because the experi- 
mental conditions are not completely satisfactory (e.g. low Reynolds numbers). 
We have therefore examined, in the light of the analysis, all the data available 
to us, and made full calculations in those cases where the initial conditions were 
either known or easily guessed: these flows are listed in table 2, which serves to 
identify them and to indicate the experimental arrangement. A more detailed 
discussion of the available data is given in Sreenivasan (1972 a).  

Illustrative comparisons between experiment and theory are presented below 
for each flow quantity in turn, occasionally displaying the sensitivity of the 
theoretical results to some of the technical assumptions in the calculations. 
To help the reader in locating the flow stations relative to the imposed pressure 
gradient, various ‘events’ are often marked on the diagrams (key in $4.6) .  In  
particular the point where K = 3 x (event K*) is shown always, chiefly 
because of its convenience in characterizing the external pressure gradient 
independently of any boundary-layer measurement. (The one exception is flow 
L, for which Launder’s values suggest K* to be at xo itself.) 

4.1. Boundary-layer thickness 

This rather vague but useful quantity is defined here by u(6)/U w U(6)/U = 0.995 
unless explicitly stated otherwise : clearly its experimental determination calls for 
accurate velocity measurements in the outer part of the boundary layer.? I n  the 
integral method of $ 3 we naturally put u = U at y = 6, but no inconsistency has 
been found in practice between these two definitions when the initial condition 
for the calculation of 6 is taken as the 0.995 point in the measurements at 5. 

Figures 3 (a)  and (b )  compare the boundary-layer thickness predicted by the 
present theory with various measurements. It is seen that choice of different 
velocity profile representations (figure 3 a) or of a different virtual origin xo (in- 
volving a shift of 3 in. in BR 2, figure 3 b) does not materially affect the calcula- 
tions. The appreciable differences between computed and observed values of 
S(x) for x - xo > 9 in. in BR 2, the largest encountered in the present calculations, 

t The values of 6 quoted here for the experiments of Badri Narayanan & Ramjee (1969) 
have generally been obtained from Ramjee (1968), exoept in a few cases where a re-examina- 
tion of the raw data suggested the necessity for a revision. 
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0.8 

h 

d .c 0.4 * 

0 5 10 

z-z,, (in.) z--x,, (in.) 

FIGURE 3. Boundary -layer thickness measurements (points) compared with calculations 
showing small effect of retaining the first term in the summation of the profile representation 
(3.1) with TI = (dashed curve on BR l), and of shifting the origin (downstream by 3in., 
dashed curve on BR 2). Arrows mark K*, except in flow NR. 

suggest that the outer layer, with its relatively small velocity change (U  - ?i,)/TJ, 
might have been missed in the measurements, particularly as the inner layer will 
have at this stage become relatively thick. This inference is supported by the 
good agreement between theory and experiment for inner-layer parameters 
(see 54.3 below) in the same flow, and for outer parameters in the very similar 
flow S 1 ($4.2). These comparisons for BR2 are specially interesting because it is 
in a sense an extreme case; the low Reynolds number R, = 307 a t  xo makes true, 
fully developed turbulent flow there unlikely. 

Excellent agreement is also shown in figure 3 ( b )  for flow NR, in which the 
maximum value of K ( II 1.7 x 10-6) is appreciably less than the critical value 
suggested for example by Launder (1964) and Kline et al. (1967). In  fact, all the 
comparisons in figure 3 demonstrate that the asymptotic theory constructed for 
a large A yields the boundary-layer thickness correctly almost right from x,, 
where the pressure gradient is imposed: the neighbourhood of xo where the theory 
may not be valid cannot be distinguished. 

The observed thinning of the boundary layer has a simple physical explanation 
in terms of vorticity conservation, which must hold in the outer limit (2.3). 
For it  is a direct consequence of Bernoulli’s equation (3.3) that the velocity 
difference U - Go across the outer layer decreases downstream, requiring a 
corresponding contraction of the boundary layer t o  maintain the net outer-layer 
vorticity of about ( U  - Go)/& 

An immediate consequence of the inviscid nature of the outer flow is that the 
‘edge’ of the boundary layer is a streamline and the entrainment is zero (to 
lowest order in A-l). Head & Bradshaw (1971) have pointed out that it is impor- 
tant to consider both absolute and relative vorticity in discussing entrainment. 
According to the present theory, the absolute vorticity is constant (in the f3st 
inviscid approximation) along each outer streamline, and so is the value relative 
to the total outer-layer vorticity, which must also naturally be conserved; 
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0 4 8 

2-q, (in.) 

0 10 20 30 
I '  I I I (  

12 

0 5 10 15 

z - x 0  (in.) 

FIGURE 4. (a) Mass flux in boundary layer of flow PH 1, adopting three different definitions 
for 6. ( b )  Approximate constancy of the boundary-layer Reynolds number U6/v during 
reversion; arrows mark K*. Points are joined by lines for clarity. 

but the value relative to the much higher overall vorticity (of order U / 6 )  must 
decrease. Experimental verification of such detailed results, or even of the con- 
clusion that the mass flux U(6-  6*) in the boundary layer must remain constant 
along the flow, is not easy especially as a definition of 6 using vorticity requires 
differentiation of measured velocity profiles. However, experimental data for 
the mass flux, using more conventional definitions for 6 (prescribing u(6 ) /U) ,  
leave no doubt (figure 4a)  that the entrainment is negligible: indeed the con- 
clusion is better confirmed for u(6)/U closer to unity. Furthermore, as 6" is gener- 
ally small compared with 6 in all these flows, an approximate but useful result is 
that the Reynolds number R = USlv changes little during acceleration from its 
initial value at xo: figure 4 ( b )  shows this to be well borne out by experiment. 
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J 
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1 .o 
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FIGURE 5. (a) Comparison of quasi-laminar solution (curves) with measured velocity profiles. 
(i) 0, flow L, 1: = 21in.; ., BS2, x = 0.57ft. (ii) Flow BS 1: 0,  x = 0.57ft; W, 0.74ft; 
A, 0.9 1 ft. (b)  Comparison of quasi-laminar solution (full curves) with flow S 1. A, 2 - zo = 0 
in.; 0,  gin.; ., 12in. 
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Uf 

40 

- 

20 - 

I I I I 

1 .o 10 101 

Y+ 
FIGURE 6. Velocity distribution in BR 2 on wall variables, using meaaured wall stress. /////, 
experimental data; --, u+ = 6.41n y++5.6; - , quasi-laminar theory, using Faher-  
Skan inner solutions. At x-xo = 16in. curve B shows the quasi-laminar theory with a 
Blasius inner solution. 

4.2. Velocity proj2es: displacement and momentum thickness 
Once the inner and outer solutions are known, their union (in the manner 
described, for example, by Van Dyke 1964) provides the uniformly valid com- 
posite solution, to lowest order, and by integration of these profiles the displace- 
ment and momentum thickness can be determined. Alternatively, one can use the 

expressions U P  % u8*+GocT*1 u=e M U%9+G@, (4.1) 
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derived easily from the standard definitions of 6* and 8 by expanding the uni- 
formly valid expression for u in the integrand in terms of the inner and outer 
solutions and retaining the lowest order terms. (Note incidentally that, while 
we must have s" < 6 for the asymptotic analysis to be valid, contributions to 6" or 
8 from both solutions can be of the same order if (U  - U,)/U is small, for then we 
can have 

still keeping 8 (always of order 6"") much less than 6; similarly for 8.) 
Figures 5 (a) and ( b )  show excellent agreement between measured and predicted 

velocity profiles in outer variables, especially for the flow studied by Sreenivasan 
(1972 a )  with the object of obtaining accurate outer-layer distributions. The more 
severe test imposed by the use of wall variables for plotting data (figure 6, for 
flow BR 2) shows, not unexpectedly, certain discrepancies near the wall in the 
early stages of reversion (x-q, < 7in.), even when the measured wall stress is 

U6" = 0[ (U-Eu, )6 ]  = O[-ii,S"*], 
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FIGURE 8. Skin friction and pressure gradient parameter in BR 3 and ( b )  BR 2. C, first 
follows the curves marked T, obtained from a fully turbulent calculation using Spence's 
method; downstream, it obeys quasi-laminar theory (-, Thwaites's methods; - - -, 
Falkner-Skan method). Note in (b)  the large departure of measured c, from theory a t  the 
last station, indicating retransition to turbulence. 
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used for defining the variables. At the last station x-xo = 16in., the pressure 
gradient has dropped to zero, so that the Falkner-Skan fit to Z,, at earlier stations 
is no longer valid (figure 2) ;  as laminar velocity profiles form a one-parameter 
family to a good approximation, a ‘local’ Blasius solution (i.e. one fitted to the 
local momentum thickness, for example) for the inner problem is more appro- 
priate, and produces excellent agreement. 

Whatever discrepancies there might be close to the wall just downstream of 
xo, however, apparently they have no great effect on the integral parameters of 
the velocity profile like R, and the shape factor H = 6+10; both of these are very 
well predicted (figures 7 and S), again almost all the way from x,,, in flows with a 
relatively low initial Reynolds number and high final value of H (BR 3, figure 
7 a)  as well as in the opposite case (PH 1 , figure 7 b)  . 

Also shown on figures 7 (a)  and ( b )  are the values of R, and H in fully turbulent 
flow as given by Spence’s method: it is seen that these agree with the quasi- 
laminar solution over the initial stages for H (up to its minimum), and much far- 
ther downstream for &. The explanation for this somewhat surprising result is 
that with a large pressure gradient the skin-friction term in the momentum 
integral equation solved by Spence’s method does not make a large contribution 
to the momentum balance in any case, so that the solution approximates to that 
of (3.4) in the earlier stages of reversion where the boundary-layer characteristics 
are dominated by the outer flow (as the terms containing Ti, in (4.1) are small). 

4.3.  Wall parameters 

The most extensive (and also possibly the most reliable) measurements of the 
skin friction during reversion have been made in two flows BR 2 and BR 3, using 
a heat-transfer gauge with a universal calibration in both laminar and turbulent 
flow. Comparison with the inner-layer calculations of $3.2 shown in figures 8 (a) 
and (b)  reveals generally good agreement in the later stages of reversion, particu- 
larly when using the Thwaites method, which has a slight superiority over the 
Falkner-Skan solutions owing to the difficulty in fitting a uniform power law to 
uo (see figure 2) .  It is consistent with our observation on the inner velocity profile 
(54.2) that the quasi-laminar solution (3.8) for ct should be invalid in the earlier 
stages of flow development; the reason is not merely that associated with the 
failure of boundary-layer theory at  the leading edge of, say, a flat plate, but also 
that the Reynolds stresses are not in fact negligible in the wall layer near xo. 
Thus, calculations using Spence’s method for fully turbulent flow predict quite 
well the observed initial increase in ef. These two limiting solutions do leave a 
definite although short region in the middle which could legitimately be identi- 
fied as the transition region I1 of 8 1. 

A second wall parameter on which experimental information in reverting flows 
is available is the heat-transfer coefficient measured by Moretti & Kays (1965). 
A typical set of results, shown in figure 9, reveals again a transition region be- 
tween fully turbulent and quasi-laminar flows, of the same nature as in cf.  Similar 
comparisons with three other experiments (MK5, MK9, and MK12) confirm 
the above conclusions (Sreenivasan & Narasimha 1971). 

- 
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FIGURE 9. Comparison between measured (circles) and calculated (curves) vGriation of 
Stanton number in MK 7. The fully turbulent curve is taken from Moretti & Kays (1964). 

4.4. The pressure-gradient parameter 

Because of the likely correlation of at least the final stages of reveraion with the 
parameter A, it would be useful to have its value a t  each station, x, but this is not 
directly possible because A involves the unknown characteristic Reynolds stress 
T ~ .  This difficulty is not very serious, however, because there are grounds for 
believing that during rapid acceleration T~ hardly changes in magnitude (Launder 
1964); such ‘stress-freezing’ has been observed by Narasimha & Prabhu (1972), 
for example, in suddenly accelerated wakes, and is consistent with the measure- 
ments of turbulent energy reported by Blackwelder & Kovasznay (1972). We 
may thus replace the local stress ~ ~ ( 2 )  by the initial value 7,,(x0), which in turn may 
be approximated by the wall stress ~ , , , ( x ~ )  at xo as the boundary layer may be 
assumed to be in equilibrium there. The parameter 

4 4  = --P’@) W)1.r,(%) 
so calculated is shown in figures 8 and 9, T , ( X ~ )  being obtained from a standard 
curve such as that of Coles (1953) if necessary (as for example, in the Moretti & 
Kays experiments). 

4.5. The ‘ turbulent ’ velocity $mtwctions 

Here again we need to  consider inner and outer layers separately. Badri Naray- 
anan & Ramjee (1969) observed that, during the later etages of reversion, the 
distribution of the r.m.s. value of the fluctuating longitudinal velocity component 
u‘ exhibited, near the wall, a certain similarity, in terms of ‘internal’ scales like 
the location (y = I) and magnitude (u&) of the maximum value of u‘ at each 

28 P L M  61 
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station. No attempt was, however, made to relate these scales to other parameters 
in the problem. 

Now if the u‘ fluctuations in the quasi-laminar flow are largely an inheritance 
from the initial turbulent boundary layer and not due to local generation, the 
frequencies contributing most to the energy will be appreciably less than the 
value iio/s” characteristic of the inner layer. For example, at x = 16in. in BR 2,  

zap 2: Uls” 2: 20 000 CIS, 

whereas observation shows that there is little energy beyond frequencies of 
the order of lo3 c/s in u’; such fluctuations are therefore quasi-steady to a good 
approximation.? Now the development of steady perturbations on a laminar 
boundary layer that is a member of the Falkner-Skan family has been studied in 
great detail by Chen & Libby (1968), who have formulated and solved the 
appropriate eigenvalue problems. Their results for the decay of the perturbation 
imply that, sufficiently far downstream, we should have Z(s) scaling with $(x) and 

where A, = A,(m) is the lowest eigenvalue computed by Chen & Libby for the 
boundary layer with Go cc (z - x ~ ) ~ .  

Data on these quantities from the experiments in which a power-law fit to Tio 
was particularly good are shown in figures lO(a) and (b) .  Although there is con- 
siderable scatter in the data for I ,  chiefly because of the difficulty of determining 
the location of a maximum that occurs very close to the wall, it is clear that the 
mean trend of the parameter 118 is independent of x. The velocity scale uLaX 
is capable of more accurate determination and follows the power-law decay of 
(4.2) very closely (figure l o b ) .  Incidentally, using Chen & Libby’s data on A, 
the exponent in (4.2) is well fitted by the expression 

- & ( l + r n ) A ,  = -(1+3*lrn) (4.3) 

for rn > 0, and in the experiments surveyed here is not far from - 6. 
This mechanism naturally cannot operate in the outer layer, where conditions 

appear to be akin to those under which the theory of rapid distortion might apply. 
Although an appropriate version of this theory for anisotropic shear flow is not 
yet available, we note that the shear in the outer layer is usually negligible, and 
recent work on axisymmetric homogeneous turbulence (Sreenivasan 1972 b )  
suggests that, unless conditions are extreme, the isotropic results of Batchelor & 
Proudman (1954) provide good estimates of the change in component energies. 
Now the rapid-distortion limit ignores both inertia and viscous forces, and can be 
valid only if the final position of each particle is determined by the external 
strain (i.e. pressure gradient in the present case) to within a distance less than a 
characteristic scale of the turbulence. If this scale is taken as the Kolmogorov 
length, the condition is not easily satisfied; but useful results can be obtained 

t We may also recall here the finding of Launder (1964) that the measured absolute 
energy contained above any particular wavenumber continuously decreases during accelera- 
tion. 
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FIGURE 10. (a) Length scale in similarity distribution of u'. (a) Decay of velocity fluctua- 
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which cannot be located in LS because 6 is not known. No significanoe need be attached to 
the single curve drawn through the points for BR 1 and BR 5, which happen to plot very 
closely together. 

by the theory even when the condition is met only for the energy-containing 
eddies (Townsend 1956, p. 66). Taking the latter as having a scale of order 6, 
calculation shows that the time of flight of a particle in the outer layer is approxi- 
mately a fifth to a tenth of S/u', in the experiments of Badri Narayanan & Ramjee 

28-2 
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FIGURES 11 (a, a). For legend see facing page. 

(1969) and Blackwelder & Kovasznay (1972) respectively. A tentative applica- 
tion of the theory (which will be further discussed elsewhere) is therefore of 
interest, especially as other evidence regarding the relevance of rapid distor- 
tion to shear flow problems (Narasimha & Prabhu 1972) is also available. 

On this basis, we may start with a u’ profile assumed given a t  an initial station 
and compute its development downstream, applying rapid distortion theory 
along each streamline in the outer layer and the eigenfunction theory? described 
above in the inner layer. The results of such calculations are compared with 
measurements in figures 11 (a)  and ( b )  : it  will be seen that the agreement is 
generally very good, except in a narrow intermediate region where neither theory 

t The exact eigenfunctions required have not been computed by us; we have followed an 
approximate procedure suggested by Kemp (unpublished report), the results of which 
compare well with the known exact solutions at  m = 0 and - 0.0476. This same procedure 
incidentally gives (4.3) for the exponent in (4.2). 
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FIGURE 11. In (a), ( b )  and (c), the uppermost profile, drawn through the measured points, 
is taken as the initid condition for calculations. (a) Flow BR 3 : u' normalized with local 
free-stream velocity ; curves show laminar eigenfunctions (full lines) and rapid-distortion 
theory (brokenlines). The same degree of agreement is obtained at  all intermediate stations, 
omitted here for clarity. Inset indicates the relative positions of the measuring stations. 
(b)  Flow BK: u' in outer region, normalized with reference free-stream velocity. Curves 
show rapid-distortion theory. Note shifts in the origin for the ordinate. (c) Flow BK: o' 
in outer region, normalized with reference free-stream velocity. Curves showrapid-distortion 
theory. Symbols same as in ( b ) .  ( d )  Bursting :ate per unit span, in the flow SK; F+, 
spled in wall variables (broken line), and P, scaled in mixed variables (full line), 
F = F+(&Rpct). 

will apply, (A formal matching of the two theoretical solutions does not appear 
possible since the outer solution does not possess a simple, well-defined inner 
limit.) It should perhaps be emphasized that these diagrams display the true 
decrease in uf that does occur during reversion. Earlier statements (Head & 
Bradshaw 1971; Blackwelder & Kovasznay 1972) that the absolute turbulence 
intensity q' remains nearly constant are correct in the rough sense that it does 
not keep in step with U ( x ) .  Observation shows that, as the outer edge of the 
boundary layer is approached, qt2 in fact increases roughly like U, consistent with 
rapid-distortion theory. 

Rapid-distortion theory is less successful for the normal component 2rf (figure 
11 c), in this as in other shear flows. The precise reason for this is not known, 
but the vast difference in the turbulent scales in the x and y directions could be 
partly responsible. This is also reflected by the relatively better agreement with 
experiment of similar calculations for the spanwise component w' (not shown 
here), although even here it is not as good as for u'. 
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4.6. Succession of eaents during reversion 

Many of the diagrams presented so far carry markers indicating the location of 
some of the following events: 

K*: K N 3 x i O W ,  

A*: A, 2: - 0.025, 

L*: disappearance of log region in wall law, 

H*: minimuin in H ,  

uf * : maximum in u&,JU, 

uf * * : similarity in u’ distributions, 

].ti*: wall parameters take quasi-laminar values, 

A*: A 2: 50. 

Does experiment show an orderly succession of these various events during 
reversion, or even a correlation among them? Examining the flows PH 1, BR 3 
and BR 2, whose results are displayed in figures 7 (b ) ,  8 (a)  and 8 (b ) ,  the first four 
events in the above list are found to occur in the following order respectively: 
L*(K*A*)H*, K*(L*A*H*) and A*(K*L*B*), events enclosed in parentheses all 
occurring a t  or very near the same measuring station. Although the above order 
cannot be accepted literally in the BR experiments (where the events are not 
always well separated, so that A* is reported in BR 2 as occurring unreasonably? 
before L*), the one definite conclusion that can be drawn is that H* does not 
precede the other events, as has already been observed by Launder (1964). 
Furthermore, the point of departure of cr from the fully turbulent curve is located 
close to A* (figures 8 (a)  and (b ) ) .  

On the other hand, the last four events in the list occur downstream of the first 
four. Thegeneral order appears to be u’*( W*u’**A*), although uf4 cannot be well 
located in BR 3. The events W* and A* occur very close to each other also in 
all the experiments of Moretti & Kays analysed here. This aspect is further 
discussed in $5. 

It is interesting to re-examine the data on turbulent bursts in the light of the 
above picture. Their rate of occurrence F (per unit span) has been correlated with 
the parameter K by Kline et al. (1967), who deduce (by extrapolation) a critical 
value K = 3-5 x for the complete cessation of bursting and consequent 
relaminarization. Their data on the boundary layer for a ‘strongly favourable 
pressure gradient’ (designated SK in table 2) are shown plotted against A in 
figure 11 (d) ,  using for P both the inner scaling suggested by Kline et al., 

F+ = F v ~ U * ~ ,  

t If the equations of motion for a turbulent boundary layer are written in wall variables, 
it is found that the only non-dimensional parameter to  appear is A,, which should therefore 
show a strong correlation with violations of the law of the wall, as found by Pate1 (1965). 



Relaminarixation in turbulent boundary layers 439 

and a mixed scaling that Rao et al. (1971) have shown is more appropriate 
( P  = Fd*/UU,)t. Both parameters fall exponentially in A over the whole range 
of available data; no sharp critical station can be identified, nor can an obvious 
extrapolation t o  F = 0 be made. It will be seen that the maximum value of A 
attained in these experiments is only about 30, which from the above discussion 
would suggest that complete reversion has not taken place; this is supported by 
wall stress measurements, which show cf still rising at  the last station in the flow. 

From the limited data available it would appear therefore that there is a rapid 
decline in the bursting rate in an accelerating turbulent boundary layer, well 
before the wall variables begin to assume quasi-laminar values$. This view is 
consistent with the conclusions of Rao et al. (1971) that bursting rates are strongly 
influenced by the outer flow and are not exclusively wall phenomena. 

4.7. Retransition to turbulence 

In  most of the experiments we have considered, the cycle of events is completed 
by retransition to fully turbulent flow. Launder (19G4) has suggested that the 
process here must be largely similar to direct transition from laminar to turbulent 
flow, but the ' retransition point' (if it exists) has not been located in any of the 
experiments as definitely as it can be in direct transition (Dhawan & Narasimha 
1958). The occurrence of a maximum in the shape factor H ,  sometimes taken to 
indicate retransition, is no more than a rough guide. We see, for example, in 
figure 7 (b )  that the quasi-laminar theory is predicting flow development in PH 1 
even beyond the maximum H ,  as satisfactorily as elsewhere. 

The maintenance of an effectively laminar inner layer in spite of the highly 
disturbed state of the flow in the quasi-laminar region must be attributed to the 
strong stabilizing influence of the favourable pressure gradient. Correspondingly, 
we may expect retransition soon after the onset of instability. The critical in- 
stability Reynolds number for the inner layer can be estimated using the correla- 
tion given for example by Stuart in Rosenhead (1963, p. 543), in terms of the 
profile shape factor (for the inner layer, of course), which itself may be obtained 
by the Thwaites method (see 3). A comparison with the computed values of the 
actual inner-layer Reynolds number is shown in figure 12 for three experiments. 
In  PH 1 it would appear that the flow is still stable a t  the last measuring station, 
2in. downstream of the H,, point; the continued validity of the quasi- 
laminar solution (confirmed by figure 7 b )  is therefore to be expected. In  BR 2, 
the critical condition for instability is reached very near Hmax; cf shows a strong 
departure (figure 8 b )  from the quasi-laminar theory at the next station, un- 
fortunately 6 in. downstream, showing that retransition certainly occurred 

-f Either scaling should be acceptable in this particular case, as the streamwise variation 
of R, is negligible in SK. For the same reason, correlation of the bursting rate with K could 
be useful in the particular flow SK. 

$ Although there is no information yet on the average bursting period P at a point in 
large favourable pressure gradients, note that an increase in (as implied by data on F )  
would be significant, since in accelerating flow with a thinning boundary layer, we should 
expect a dmeaae in F ( N SlU, according to Rao et al. 1971) if the boundary layer were in 
equilibrium. 
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before that station and quite possibly just downstream of instability. The sharp- 
est location of retransition was made by Launder (1964) using Reynolds stress 
measurements; i t  will be seen that it correlates very well with our estimate of the 
onset of instability. Apparently the quasi-laminar flow is sufficiently disturbed 
that instability quickly triggers off sufficient energy production in the inner 
region to cause quick retransition. 

Further evidence in support of this picture of retransition is contained in the 
observation of Blackwelder & Kovasznay (1972) that new turbulent spots are 
born near the wall (8 c y+ < 30) when the pressure gradient has decreased 
sufficiently. Here and in the experiments of Moretti & Kays (1964) predictions 
of the quasi-laminar theory are in good agreement with measurement (of a 
sensitive parameter like cf or X) right up to the calculated instability point for 
the inner layer. 

5. Discussion 
The dynamics1 considerations of 3 4 suggest a more logical division of the flow 

into regions different from our preliminary attempt in $ I .  In  the first place, it  is 
clear that the outer solution in the quasi-laminar limit is valid almost from the 
point of commencement xo of the pressure gradient; no transition region of type I1 
can here be identified, and in a narrow but justifiable sense reversion in the outer 
layer can be said to occur immediately after the acceleration a t  xo in all the ex- 
periments reported to  date. 
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On the other hand, the inner quasi-laminar solution, in particular for a wall 
parameter like cf, is certainly not valid near xo. However, the inner contributions 
to integral thicknesses like 6* or 0 are so small where they are incorrect (i.e. 
near x,,) that good estimates of R, and H can be made all the way from xo. It is 
unfortunately not possible to use these estimates t o  infer from the momentum 
integral relation a value for cf, which is a small difference between two large 
contributions to the momentum balance (note the strange similarity to adverse 
pressure gradient flows). 

In  fact the quasi-laminar solution for cf appears to become useful only after 
the pressure-gradient parameter A reaches values of the order of 50; it is also 
around this same station in the flow that the intensity of the inherited turbulence 
begins to decay like a quasi-steady perturbation on a laminar boundary layer. 
It should be stressed that, in the present view of relaminarization as an asymp- 
totic process, A cannot possess a ' critical' value; the number quoted above is 
rather a convenient indicator of the practical usefulness of the theory. 

Further downstream, the inner layer becomes unstable as the pressure gradi- 
ent decreases in severity; the evidence suggests that retransition quickly follows 
instability, the disturbed outer layer undoubtedly acting to reduce the gap 
between these two stages often noticed in careful experiments on direct tran- 
sition. 

The different stages in a reverting flow are possibly characterized best using 
cf, whose variation is shown schematically in figure 13. Not much error is likely to 
be committed by assuming that the conventional turbulent laws are valid till A, 
reaches the critical value of about -0.024 used by Patel (1965). Beyond this 
point and before A reaches 50, cf does not vary much, and the corresponding 
bubble-shaped region near the wall may be labelled as the true (reverse-) tran- 
sitional region I1 in the flow. As a rough approximation, one is tempted to in- 
corporate this region into a theoretical scheme by assuming cr to be constant 
within 11, at either the turbulent value at A*, or the maximum from the quasi- 
laminar solution: the experimental data, summarized in table 3, encourage the 
speculation that the two values cannot be far from each other. (BR 1 and the 
PH experiments present certain difficulties, which are discussed in appendix C.) 
More refined approaches to the flow in this region must await careful measure- 
ments of cf in boundary layers with high initial Reynolds numbers, but all the 
flows observed to date can be satisfactorily patched across I1 in the manner 
suggested to obtain a complete calculation of the whoIe Aow. 

This scheme must, however, be considered tentative in some respects, for the 
implicit assumption that A* precedes A* may not be universally valid. One can 
in fact conceive of conditions under which a calculation of the above sort would 
itself result (a  posteriori) in A* preceding A*, although they involve appreciable 
changes in U over streamwise distances of the order of a few 8, SO that the boun- 
dary-layer approximation itself becomes questionable. Nevertheless, this con- 
sideration emphasizes the need for further experimental work in flows with much 
higher initial Reynolds numbers than in current work, particularly to determine 
the relevant parameters in the reverse-transitional region and the role of A 
and A. 
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FIGURE 13. Schematic variation of skin-friction coefficient shown against different flow 
regimes during reversion. I, fully turbulent; 11, reverse-transitional; 111, quasi-laminar 
(dashed line separates inner and outer layers) ; IV, turbulent after retransition. Upper 
diagram compares variation of true cf (shown hatched) with model suggested here, in 
which c, follows fully turbulent theory (curve T) up to A *  and quasi-laminar theory 
(curve &) beyond the point of maximum cI.  The gap between the two theories is patched 
by a region P of constant c j ;  it is possible that the true c, rises slightly above P ,  instead 
of always remaining lower as shown. Curves T and Q are shown dashed beyond their 
regions:of validity. 

Maximum value 
from quasi-laminar Measured Method of 

Experiment theory c j  a t  A* measurement 

BR 1 0.0039 0.0058 Preston tube 
BR 2 0.0064 0.0059 Heat -transfer 

BR 4 0.0039 0.0035-0*005 Preston tube 
BR 6 0.0046 0.004.-0*0055 (also Clauser 
BR 6 0.0054 0.005-0*006 plots) 

S I  0.0045 0.0062 Clauser plot 

BR 3 0-0062 0-0062) gauge 

PH 1 
PH 2 

0-0037 
0.0036 Fence technique 

TABLE 3. Comparison of maximum value of c j  in quasi-laminar theory (computed wing 
Thwaites’s method) with measured value at the point A* 

In  the final picture that emerges, only the reverse-transitional inner layer 
poses a difficult basic problem demanding further study, possibly based on modi- 
fications of the similarity arguments of Pate1 & Head (1968); but it does not 
strongly affect many important mean flow characteristics, which can be deter- 
mined satisfactorily without invoking specific models for turbulence. Part of the 
reason for this is that the Reynolds shear stress, being nearly frozen, behaves in 
such a way it is are irrelevant to the mean flow dynamics. Perhaps this whole 
phenomenon, so largely governed by the need to conserve angular momentum 
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in a dominating pressure gradient, should only be called quasi-reversion: we sus- 
pect that it is quite common, and occurs in most good wind-tunnel contractions. 

Part of this work was done while R.N. was visiting the University of Strath- 
Clyde: he would like to thank Professor Pack and his colleagues for their hospi- 
tality. K.R.S. acknowledges the award of a fellowship from the University 
Grants Commission. We are indebted to Dr P. A. Libby and Dr N. Kemp for 
correspondence on the eigenfunctions mentioned in $4.5. 

Appendix A 

(Townsend 1961, equation (3.9)) 
Townsend’s notion of equilibrium in the inner layer leads to the proposal 

involving the parameters p and the K h m h  constant k .  Integrating for u(y) 
we get 

1 u I [  

(4 (1+y+A,))-1 

U ,  k A , ( l + y f A , ) t + l  
u + = - = -  In - 

+ 2( 1 -,4?sgn A,) ((1 + y+A,)* - 1) + B + 3-76,) (A 2) 

where sgn AT = 1 according as A, < 0: its appearance here, as in Townsend’s 
inner law, is a consequence of the assumption that turbulent transport in equili- 
brium must occur down the gradient. The constant in (A 2) is evaluated following 
Patel & Head (1968), whose inner law differs from (A 2) solely through the absence 
of the sgn A, factor. 

As no direct measurements of stress gradient in reverting flows have been 
reported, the only way of determining A7 at present appears to be by making a 
best fit of the theoretical inner law to the experimental data. We have done this 
for flow P H  1, adopting both the Patel-Head version and equation (A2) as the 
standard inner law and using K = 0,418, B = 5.45 and p = 0.18 (as Patel & 
Head do). From the typical velocity profile comparisons shown in figure 14 (a)  it 
will be seen that A, cannot always be determined very accurately by this pro- 
cedure, for the region available for judging the fit is only y+ < - l/A,; beyond this 
point both inner laws lead to imaginary results. 

Nevertheless, several interesting conclusions emerge from such calculations. 
First, the position where ‘reversion’ occurs, as judged by departure from the 
standard law, is the same according to either version. Second, the A, so found, 
like the more easily measured A,, shows a maximum upstream of ‘reversion’, 
again irrespective of which inner law is used (figure la@)). Thus one is forced to 
admit regions of ‘fully turbulent’ flow where A, has reached and passed the 
‘critical’ value a t  which ‘reversion’ eventually takes place; at least, then, there 
must be one more parameter in the problem.? 

1 

t I n  addition to the two already present in the inner law, namely A, and Ap,  although the 
latter does not contribute significantly to u+. 
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FIGURE 14. (a) Determination of A, by fitting inner law (A2) to measured velocity profiles in 
flow PH 1. At x0 - zB = 0, - 1 in., curves for two different values of A, are drawn, to show the 
likelv emor in obtaining A,. At X ~ - X B  = 1 in., both the Patel-Head inner law and (A2) w e  
shown with A, = - 0.009 (the critical value quoted by Patel & Head); using (A2), A, is 
see11 to be about - 0.004 a t  this station. At xo - X B  = 2 in., the inner law (A2) is shown with 
A, = - 0.009 for illustration, but no value of A, will fit the measurements. ( b )  The parameters 

and A,. -.-.-, A, from Patel-Head law; ---, A, from (A2). For z0-zg > 2in. no 
va;lL~e of A, produces agrcement with experiment. ( x 0 - z g  as in Patel & Head 1968.) 
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Finally, the numerical value of AT inferred from this procedure depends 
appreciably on which version of the inner law is used: thus the final ‘critical’ 
value for A, is only about - 0.004 using (A2) ,  as against - 0.009 using the Patel- 
Head version. It would be difficult to reconcile the former value with the criterion 
of Bradshaw (1969) .  

We conclude from all this that the inner law in a turbulent boundary layer 
subjected to favourable pressure gradients is not sufficiently well established for 
departures from i t  to be interpreted as evidence of reversion. 

Appendix B 
Equation (3 .7 )  when written in full reads 

where the B, = Bt(UO, n)  are the following functions: 

1 + 6U0- 9Ug 3( 1 - Uo) (1 - 3u0) 3( 1 - V,)2 - 
+ 2n+1 3n+l  ’ B 2 = 3 U g - 1 +  n + l  

B, = 2B, + n( 1 - U,)/(n + 
( 1  - u,) (3ug - 1 )  6U0(l - uo)2+ 3(1- U0t3 

+ (2n+ l ) z  (3n+ 1 ) 2  
Be = - 

Appendix C 
The difficulties presented by the PH experiments and by B R l  during the 

analysis of the flows listed in table 2 are discussed here. 
PH experiments. Quasi-laminar calculations of 8 3 do not agree with measure- 

ment in PH 2,  but the reason could be that PH 2 is not a plane boundary layer as 
may be inferred from the fact that the data do not obey the two-dimensional 
momentum integral equation (Sreenivasan 1972a) : the experiment was con- 
ducted in a pipe whose radius was only twice the initial boundary-layer thick- 
ness. Further, there are comparable changes in the flow along both axial and radial 
directions during acceleration, so that the applicability of the boundary-layer 
approximation may itself well be in doubt. Finally, the measurements were 
made at  a fixed station while the pressure gradient was translated, so that the 
origin xo and the state of the flow there were not the same during the experiment. 
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These factors do not necessarily invalidate the study of the inner layer that was 
the chief concern of Patel & Head; and the first two factors do not operate as 
severely in PH 1, which has a thinner boundary layer and is tolerably plane. 
However, for x - xo > 4 in. R, calculated by integrating the two-dimensional 
momentum integral equation is always more (by 10-20 %) than the measured 
value. Correcting for the axisymmetry of the flow in the definitions of momentum 
and displacement thickness does not materially affect this observation. On the 
other hand, use of the theoretical quasi-laminar cf instead of the measured value 
in integrating the equation, with all other quantities still uncorrected for 
axisymmetry, results in much closer agreement (maximum deviation N 5 yo) 
in the same region, a result which goes some distance in reinforcing the accuracy 
of the quasi-laminar calculations. Finally, if one uses the quasi-laminar cf and 
corrected values for the boundary-layer parameters, this agreement remains 
substantially the same; the remaining small discrepancies could well be the effect 
of varying initial conditions. 

Experiment BR 1. For this flow, detailed comparison with experiment shows 
that the quasi-laminar shape factor continues to increase for some distance 
downstream of the point where the reported experimental values start decreasing. 
A closer look at the raw data of BR 1 (which incidentally was a preliminary ex- 
periment that preceded by several months the other flows reported in Badri 
Narayanan & Ramjee 1969) revealed certain inconsistencies which could not be 
completely explained (we are grateful to these authors for a very detailed dis- 
cussion of the flow). However, a repetition of the experiment with the same 
apparatus and very nearly the same conditions yielded results quite consistent 
with the quasi-laminar theory. 
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